
A universal launcher for glanceable AR headsets
Khushman Patel

College of Computing
Georgia Tech
Atlanta, USA

khushman@gatech.edu

Prof. Blair MacIntyre
College of Computing

Georgia Tech
Atlanta, USA

blair@cc.gatech.edu

Abstract—AR headsets have the potential to be an effective
medium to display various information needed by users. In this
project, we explore the paradigm of glancability for AR headsets
by proposing a novel glanceable AR ”launcher” which uses the
user environment to be unobtrusive while still being effective
at providing information to the user. We implement a proof of
concept of the proposed launcher, and showcase the interface
through a Virtual Reality(VR) demo. We discuss the technical
issues with a complete implementation and details aspects of the
system that need further examination.

Index Terms—Human-centered computing - Mixed/augmented
reality; Human-centered computing - User interface design

I. INTRODUCTION

Augmented Reality(AR) headsets are becoming more pow-
erful by the day, and will soon be consumer technology.
They are envisioned to be similar to computers, providing
information according to our needs [1]. With the prevalence of
information in the smartphone era, users have various informa-
tion needs to be able to complete goals or take decisions, and
these needs have been well studied [2] [3] [4]. To complete
these information needs, multi-tasking will be essential for
AR headsets, e.g. apps on smartphones. Providing a useful
interface to access and interact with these apps, or feeds as
we will call them for AR, is essential. Adaptive interfaces
that mold themselves according to user behaviour and their
environment have been envisioned before [5]. Various methods
to unobtrusively provide information through glanceable AR
have recently been studied for their suitability for different
types of tasks. Lu, Feiyu et al. [6] state that the ”head-glance”
and ”eye-glance” methods are preferred, with the the ”eye-
glance” being preferred for ”continuous monitoring tasks”.

In this project, we explore the paradigm of glanceable AR
through an adaptive interface for multiple feeds that can fulfill
the user’s information needs while being unobtrusive by fading
to the environment when unneeded. We implement a Proof-of-
concept system that explores such an interface, and envision
an end-to-end system for a realtime multitasking launcher. The
PoC interface can be accessed on a WebGL compatible device
at http://khushmanpatel.com/projects/ar launcher.html.

II. BACKGROUND

Glanceable interfaces for different mediums have been
explored, e.g. TapGlance [7]. TapGlance considers multiple
levels of user attention while interacting it. Similarly, the
peripheral awareness strategy in information design uses the

user’s peripheral attention to place information so that it is
unobtrusive, while being easily accessible [8]. ”Periphery”
can be defined as ”what we are attuned to without attending
to explicitly” [9] [10]. Non-attentive monitoring of states or
changes in simple secondary information can be effectively
designed using this peripheral vision [11]. Embedding infor-
mation in the periphery can potentially free users to focus on a
primary objective while keeping track on less important tasks
[12]. Systems designed for real-life tasks need to be flexible
enough to accommodate all of the user’s needs. AR is well
suited for this task as AR headsets can track their user and
their environment and can work well for such a peripheral
interface [6].

Within the AR headset space, information access has been
well studied. With information always available to the user in
an AR headset, it needs to be presented such that it doesn’t
block the real world, while still being accessible to the user.
Multiple studies have tried to focus on using the cognitive
load on the user as a measure for the level of detail in
the information presented to the user [13] [14]. Some even
include environment information in displaying this information
[15]. More complete AR systems to access information have
been designed, e.g. ARWin, which offers a replacement to
a traditional desktop workspace using virtual programs [16].
Virtual content positioning has been found to be important
when considering a complete AR experience, as it cannot
block important information in the real world [5] [6].

III. MOTIVATION

AR technology is becoming increasingly feasible with AR
libraries being integrated into smartphones, e.g. ARKit [17].
Consumer grade headsets are also becoming more powerful,
e.g. the Hololens [18]. With this new computing medium
becoming consumer-ready, application development will in-
crease for this platform. Promoting and keeping open standards
relevant is important to maintain inter-operability between
different applications on the platform as this happens.

To that end, the ARML 2.0 standard, published in 2015
[19] has not seen major updates to its core specifications. This
paper aims to test out the applicability of ARML 2.0 using the
latest updates in AR libraries, especially WebXR as of April
2020, to create a ”laucher” for a glancable AR headset. Built
on ARML 2.0 feeds, it aims to provide the user a realtime
dynamic interface to their native applications. The launcher

http://khushmanpatel.com/projects/ar_launcher.html


Fig. 1: The proposed end-to-end launcher system design

explores the use case of a dynamic glanceable interface that
can unobtrusively provide the user with the needed information
using the environment effectively.

Through the implementation of the launcher, we intend to
glean insights into what aspects of the ARML standard might
need extensions to keep them relevant with the evolving use
cases of AR. We discuss these extensions later on in the paper.

IV. IMPLEMENTATION

A. Proposed system

The proposed system includes and end-to-end solution to
implementing a realtime launcher on AR headsets. This in-
corporates a tie-in with the WebXR API [20] to analyze the
environment in real time, learning through user behaviour, and
feed servers that communicate with the headset and maintain a
relevant stream of data to the user. A figure depicting the parts
of the system can be seen in Fig 1. Each of the constituent
parts and their functions are described below.

1) Realtime Surface Manager: The realtime surface man-
ager continually streams geometry information about the user’s
environment from the WebXR API and keeps track of previ-
ously tagged or new surfaces which are valid to display feed
information to the user on.

2) Feed Manager & Server: The feed manager commu-
nicates with the feed servers to ensure that it has any feed
updates necessary. The feed server also serves temporal feeds,
e.g. a new message notification, and geo-spatially relevant
content, e.g. restaurant listings in the user’s viewport. The feed
manager contains an ARML parser that parses any updates in
the feeds and informs the Region or Placement Manager of
any changes.

3) Region Manager: A region is a collection of feeds which
is displayed as a unit to the user. Regions are dynamically
positioned around the user, and they can be pinned to a
surface or follow a user around. A region can contain a single
feed or a collection of feeds organized together. The Region
Manager keeps track of these regions and handles management
commands with regard to regions.

4) Priority Manager: The priority manager manages the
relative priority of regions between each other. This node aims
to dynamically provide the user with the most relevant feeds
according to their usage. It learns the priorities of apps as the
user uses the system and provides more information about their
habits to the system. Over time, the priority manager aims to
keep the most relevant feeds at the best position with respect
to the user.

5) Placement Manager: The organizational core for all the
feeds that are subscribed into the system. The placement man-
ager arranges dynamic regions according to the environment,
manages spatially static feeds, and handles temporally relevant
updates, e.g. notifications.

6) Glanceable User Interface design: The primary aim of
the launcher is to display information from subscribed feeds to
the user. The user interface needs to provide feed and region
management commands, and can be minimal. The necessary
UI functions needed are:

• Subscribing and unsubscribing to a new feed
• Enabling/Disabling feeds
• Grouping feeds together
• Pinning a region to a surface
Glanceable is said to be the quality of letting users get

information quickly and with low effort [21]. Glanceable
visuals are fastest interacted with when they have a high degree
of symbolism, or are text [22]. To that end, all feeds described
in this interface have a primary and secondary context. The
primary context provides a visual to distinguish between feeds
when quickly navigating to a particular feed. The secondary
context is shown when the user is looking at a feed, and adds
more detail to the feed and the user interface. An example of
both can be seen in Fig 2.

Apart from the contexts, we make sure that the UI is highly
responsive to where the user glances to it. Every element
gives feedback for a glance to the user. We define a ”Glance
Attention Area”(GAA) as the relevant focus area around the
tracked eye of the user. GAAs are typically circular to denote
the area the eyes are looking at, but can be different geometries
depending on the application. To make the interface appealing,
the primary context is switched to the secondary whenever the
context intersects with the user’s GAA. The actual area of the
GAA depends on the application and how detailed its interface
needs to be. In our case, the GAA is wide when the user is
looking at primary contexts to focus on, and narrows down
when the user is interacting with the secondary context, e.g.
to click on an icon in Fig 2.

B. Implemented Proof Of Concept

The implemented PoC provides the user with an experience
similar to the interface of the proposed system in a WebVR
environment. We provide the user with a house environment
to simulate them moving around, where they interact with
the interface described in this paper. The constituent parts of
the PoC can be seen in Fig 3. The implemented modules are
described below.



Fig. 2: Primary Context(left, highly symbolic) vs Secondary
Context

Fig. 3: Implemented PoC system design

• Region Manager - The Region manager manages the
dynamically positioned feeds. It keeps track of en-
abled/disabled feeds and groupings of different feeds.

• Placement Manager - The placement manager arranges
dynamic regions in relevant surfaces around the user and
places spatially static feeds in the scene.

• JSON files - The subscribed feeds and environment
surfaces are currently hardcoded in a JSON file and
provided as configuration options to the PoC.

1) Glanceable User Interface design: The implemented UI
interface functions are:

• Enabling/Disabling feeds, in Fig 4
• Grouping feeds together, in Fig 5
• Pinning a region to a surface, in Fig 6
The glanceable concepts discussed in the proposed system

have been implemented in the PoC. A live version of the
PoC can be opened on any WebGL compatible device here
(http://khushmanpatel.com/projects/ar launcher.html).

V. DISCUSSION

A. Content

We will need to define the types of content which will be
displayed through the primary and secondary context of the
feeds, and the parameters for how it is displayed.

Content can be organized as in Fig 7. Content here refers to
the actual data being displayed, a VisualAsset in the ARML
2.0 spec. All content used in the PoC has a primary and
secondary context to display. While there could be content
without a secondary context, it would either be static if it is

Fig. 4: Menu to enable/disable feeds

(a) Dropping one feed on
another

(b) Feeds grouped together

Fig. 5: Grouping two feeds together

highly symbolic, or in case of more detail, not be suited to be
perceived in a glance. Thus the addition of contexts to feed
data would be highly beneficial for a glanceable experience.

B. ARML 2.0 Extensions

1) Spatial Details: Spatial details are metadata information
needed to define where to position a feed. They can be geo-
static, which is a latitude/longitude if data is sent by a feed
server, or a local surface that the user has pinned a feed to.
This is well defined in the ARML 2.0 spec, and covers all use
cases.

Follow the user feeds are dynamically positioned. The
launcher positions them in realtime by parsing usable surfaces
around the user. Priority between feeds is learned through user
behaviour, and no further data is needed from a feed server to
position these.

Fig. 6: A pinned region

http://khushmanpatel.com/projects/ar_launcher.html
http://khushmanpatel.com/projects/ar_launcher.html


Fig. 7: Content organization

The ARML 2.0 spec defines an ARAnchor as an anchor
relative to the real world. It has three types:

• Geometry Either a Point, LineString or Polygon, de-
scribed with spatial coordinate tuples.

• Trackable A visual pattern that is detected in the camera
stream.

• RelativeTo An Anchor relative to other objects (e.g.
another ARAnchor); useful to create large scenes relative
to another Trackable.

A further type, ”Follow”, which defines content which will
stay with the user as they move will complete the toolset
supported by the specification for further modern use cases.

2) Temporal Details: Temporal details are metadata infor-
mation needed to defined when to show a feed. This can be a
particular duration, e.g.

• inf This defines a feed which permanently stays with the
feed manager till the user explicitly unsubscribes to it.

• Time Duration e.g. recurring 8AM-11AM show exercise
feed, or Mar 28-Mar 30 2020 show event livestream.

It can also be a notification: a push notification similar to
those used in smartphones, pushed from a feed to user e.g. a
new message on a messaging application.

The ARML 2.0 spec defines a Condition interface which
defines the constraints to show a VisualAsset. The current
conditions possible are:

• DistanceCondition DistanceCondition allows VisualAs-
sets to be activated and deactivated based on the distance
of the user to the anchor.

• SelectedCondition The selected condition allows Visu-
alAssets to be activated and deactivated based on the
selected-status of the Feature or Anchor associated to it.

Further expansion of this interface can easily accommodate
the aforementioned temporal details necessary to specify when
to display a VisualAsset.

VI. FUTURE WORK

The implemented PoC shows promise for the creation of an
end-to-end AR launcher. While most UI features have been
implemented, there is scope for addition of multiple modules
from the proposed system. The implemented PoC has statically
assigned feeds and surfaces in the WebVR environment. The

region manager deals with enabled user feeds, but feedback
from actual user usage is not accounted for, and can make
the system more functional in terms of displaying relevant
content to the user. Dynamic regions are well implemented in
the PoC, but geo-static feeds don’t have the same amount of
interaction and responsiveness. Further work in developing an
interface for the same is needed. A feed manager which can
manage subscriptions, handle feed content dynamically and
parse updates from the server will add a functional backend
which will help the user utilize the system for their use case.

Integration with the WebXR API is possible with major
browsers and libraries supporting the API. Though the API
is not mature enough for the proposed system yet, with the
advent of AR headsets which can sense the environment
around them, the system will be able to parse surfaces in
the environment around the user in real time and display the
relevant content accordingly. Implementation of the realtime
surface manager will make the experience a ”truer” form of
AR.

Further work studying the effectiveness of information
access and management using this system needs to be done. A
user study focusing on the unobtrusiveness of the the interface
to ensure glanceability is important. The effectiveness of the
system in helping users learn and retain information is another
important factor to be considered. Minimalism and the number
of options provided to the user is another aspect of the system
to look at, to ascertain if the system has achieved the desired
level of simplicity and customizability.

ACKNOWLEDGMENT

Prof. MacIntyre for being supportive throughout and always
asking the right questions. The good folks at Google for
sponsoring a Research Assistantship during Fall ’19.

REFERENCES

[1] S. K. Feiner, “Augmented reality: A new way of seeing,” Scientific
American, vol. 286, no. 4, pp. 48–55, 2002.

[2] D. Dearman, M. Kellar, and K. N. Truong, “An examination of daily
information needs and sharing opportunities,” in Proceedings of the 2008
ACM conference on Computer supported cooperative work, 2008, pp.
679–688.

[3] T. Sohn, K. A. Li, W. G. Griswold, and J. D. Hollan, “A diary study of
mobile information needs,” in Proceedings of the sigchi conference on
human factors in computing systems, 2008, pp. 433–442.

[4] K. Church, M. Cherubini, and N. Oliver, “A large-scale study of daily
information needs captured in situ,” ACM Transactions on Computer-
Human Interaction (TOCHI), vol. 21, no. 2, pp. 1–46, 2014.

[5] W. Lages and D. Bowman, “Adjustable adaptation for spatial augmented
reality workspaces,” in Symposium on Spatial User Interaction, 2019,
pp. 1–2.

[6] F. Lu, S. Davari, L. Lisle, Y. Li, and D. A. Bowman, “Glanceable
ar: Evaluating information access methods for head-worn augmented
reality.”

[7] D. C. Robbins, B. Lee, and R. Fernandez, “Tapglance: designing a
unified smartphone interface,” in Proceedings of the 7th ACM conference
on Designing interactive systems, 2008, pp. 386–394.

[8] J. Cadiz, G. Venolia, G. Jancke, and A. Gupta, “Sideshow: Providing
peripheral awareness of important information,” 2001.

[9] M. Weiser and J. S. Brown, “The coming age of calm technology,” in
Beyond calculation. Springer, 1997, pp. 75–85.

[10] ——, “Designing calm technology,” PowerGrid Journal, vol. 1, no. 1,
pp. 75–85, 1996.



[11] M. R. Endsley, “Design and evaluation for situation awareness enhance-
ment,” in Proceedings of the Human Factors Society annual meeting,
vol. 32, no. 2. SAGE Publications Sage CA: Los Angeles, CA, 1988,
pp. 97–101.

[12] P. P. Maglio and C. S. Campbell, “Tradeoffs in displaying peripheral
information,” in Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, 2000, pp. 241–248.

[13] B. Rhodes, “Wimp interface considered fatal,” in IEEE VRAIS’98:
Workshop on Interfaces for Wearable Computers, 1998.

[14] M. Billinghurst and T. Starner, “Wearable devices: new ways to manage
information,” Computer, vol. 32, no. 1, pp. 57–64, 1999.

[15] D. Lindlbauer, A. M. Feit, and O. Hilliges, “Context-aware online
adaptation of mixed reality interfaces,” in Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology,
2019, pp. 147–160.

[16] S. Di Verdi, D. Nurmi, and T. Hollerer, “Arwin-a desktop augmented
reality window manager,” in The Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, 2003. Proceedings. IEEE,
2003, pp. 298–299.

[17] Apple arkit homepage. [Online]. Available: https://developer.apple.com/
augmented-reality/arkit/

[18] Microsoft hololens. [Online]. Available: https://www.microsoft.com/
en-us/hololens

[19] M. Lechner, “Ogc augmented reality markup language 2.0 (arml 2.0),
version 1.0.” 2015.

[20] The webxr specification. [Online]. Available: https://github.com/
immersive-web/webxr

[21] T. Matthews, “Designing and evaluating glanceable peripheral displays,”
in Proceedings of the 6th conference on Designing Interactive systems,
2006, pp. 343–345.

[22] T. Matthews, D. Blais, A. Shick, J. Mankoff, J. Forlizzi, S. Rohrbach,
and R. Klatzky, “Evaluating glanceable visuals for multitasking,” Tech-
nical Report EECS-2006-173. UC Berkeley, Tech. Rep., 2006.

https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://github.com/immersive-web/webxr
https://github.com/immersive-web/webxr

	Introduction
	Background
	Motivation
	Implementation
	Proposed system
	Realtime Surface Manager
	Feed Manager & Server
	Region Manager
	Priority Manager
	Placement Manager
	Glanceable User Interface design

	Implemented Proof Of Concept
	Glanceable User Interface design


	Discussion
	Content
	ARML 2.0 Extensions
	Spatial Details
	Temporal Details


	Future Work
	References

